

CMDI 1.2: Improvements in the CLARIN Component Metadata Infrastructure
Twan Goosen, Menzo Windhouwer, Oddrun Ohren, Axel Herold, Thomas Eckart, Matej

Ďurčo, Oliver Schonefeld
CLARIN ERIC, The Language Archive - DANS, National Library of Norway, Berlin-Brandenburg Academy of

Sciences and Humanities, Leipzig University, Institute for Corpus Linguistics and Text Technology, Institute for the
German Language

Utrecht, The Netherlands; Nijmegen, The Netherlands; Oslo, Norway; Berlin, Germany; Leipzig, Germany; Viena,
Austria; Mannheim, Germany

E-mail: twan@clarin.eu, menzo.windhouwer@dans.knaw.nl, oddrun.ohren@nb.no, herold@bbaw.de,
teckart@informatik.uni-leipzig.de, matej.durco@oeaw.ac.at, schonefeld@ids-mannheim.de

Keywords: metadata, infrastructure, centres, compatibility

1. Introduction
Component Metadata Infrastructure (CMDI) has been
one of the core pillars of CLARIN since the beginnings
of this initiative (for an overview, see Broeder et al.,
2012).
It established means for flexible resource descriptions for
the domain of language resources with sound provisions
for semantic interoperability weaved deeply into the
metamodel and the infrastructure to overcome, in a great
extent, the rule of metadata schism it set out to combat.
Based on this solid grounding, the infrastructure
accommodates a growing collection of metadata records.
The development of the joint metadata domain both in
number of records and diversity of profiles is proof for
the success of the model and the infrastructure as such.
Currently, at version 1.1 of the CMDI specification, there
are 157 public profiles with 872 components defined and
the harvester collecting periodically over 680.000
records from some 60 providers in more than 80 different
profiles.
However in the first five years of its intensive usage by
the CLARIN community naturally a number of design
issues have arisen that need further attention. Out of
various options to remedy the encountered problems,
such as the creation of extensions on top of the existing
CMDI implementation or abandoning its component
based architecture, a dedicated taskforce eventually
chose to work towards a successor to CMDI 1.1 based on
the existing paradigm. After careful analysis, the task
force worked out a proposal for a number of small but
important changes and additions to the CMDI model
leading to CMDI version 1.2. In April 2014, the Standing
Committee for CLARIN Technical Centres approved the
proposal, which meant that work on the implementation
could begin.
The changes address the following aspects: lifecycle
management, structure of the model and schema sanity
(namespace issues, consistency of the meta model,
attributes, mandatory/optional elements), use of external
vocabularies and cues for tools. They are described in
detail in sections 2 and 3.

The work on the model is accompanied by a
comprehensive transition plan covering the conversion of
existing data and adaptation of existing tools using
CMDI data, described in section 4.
Finally, section 5 details still open issues and further
plans for the CMDI model and joint metadata domain.

2. New CMDI functionality

2.1 Lifecycle Management
There is no definite metadata representation for any
given language resource in terms of single fixed CMDI
component or profile. Instead, metadata modellers often
encounter situations that make it necessary to adapt or
amend existing models. Typically, such situations are
caused by needs of data providers that supply more
detailed metadata than any existing component caters for.
There were no means to track changes between versions
of individual metadata components within the current
version of CMDI. CMDI 1.2 will provide lifecycle
management support for components based on four
additional header fields: Status, StatusComment,
Successor and DerivedFrom. The mandatory Status field
is used to record the current lifecycle phase of a
component (development, production, deprecated). It
may be further annotated with a StatusComment. For
deprecated components, the URI of a Successor can
optionally be specified to indicate an improved version
of the component that should be used instead. The URI
specified in the optional DerivedFrom field allows for
the reconstruction of a component’s genesis in relation to
other components.
As all published components are kept persistently within
the Component Registry1 (see Broeder et al., 2010), the
addition of improved versions of components easily
leads to proliferation. Explicit lifecycle management and
especially the Status field will be useful for constraining
the users’ and modellers’ view to a manageable set of
components and help them focus on the most recent
versions.

2.2 Vocabularies

1 http://catalog.clarin.eu/ds/ComponentRegistry

The current version of CMDI requires value domains for
elements and attributes to be specified locally in the
components. CMDI 1.2 on the other hand will support
the use of external vocabularies, thereby increasing the
possibility to obtain semantic interoperability across
metadata.
Metadata modellers will have the opportunity to
associate a vocabulary (identified by its URI) with an
element in their components and profiles. The metadata
creator will then be able to pick values from the specified
vocabulary or (for open vocabularies) still choose to use
a custom value that does not appear in the vocabulary.
At the model level, the new facilities will be generic, i.e.
no assumption about specific services will be made.
However, initially the core CMDI infrastructure will be
designed to support specifically the OpenSKOS-based
CLAVAS vocabulary service (Brugman, 2012), through
which vocabularies of languages, organisations and value
sets extracted from ISOcat are already available.
External vocabularies may either be imported into the
CMDI component in question, or be just referenced by
the component and be used for dynamic lookup and
retrieval of values when editing metadata records.
The above will be facilitated by introducing a new
element Vocabulary in ValueScheme elements, with an
optional enumeration element for closed vocabularies.
At the instance level, an attribute ValueConceptLink (in
the CMDI namespace) will be allowed on fields that
have a vocabulary linked to hold the URI of the selected
value.
Importing the vocabulary as enumeration into the
component allows for strict schema validation of the
values in the instance data, but does not reflect changes
in the vocabulary, on the other hand referencing a
vocabulary allows keeping the list of proposed values
dynamically up to date, but does not allow for any kind
of validation of the element values. Thus the modeller
has to decide based on the expected completeness and
change rate of the vocabulary which mode to apply.
To make the new functionality available for metadata
modellers and creators, both Component Registry and
existing metadata editors must be updated accordingly.

2.3 Cues for Tools
Some of the applications in the context of CMDI,
especially those directly used by human users, require
information that goes beyond formal specification and
validation aspects. This includes documentation of
meaning and purpose of all content-related elements,
which is essential for both metadata creators and human
interpreters. CMDI 1.1 already provides an option to
document the usage of CMDI elements but lacks this
functionality for attributes or components. Therefore
CMDI 1.2 expands the existing approach to all kind of
metadata entities. This allows schema creators to
document their profiles in all necessary details.
Furthermore CMDI 1.2 will permit multiple
documentation values for different languages, which can
be the basis for localised user interfaces.
Also in the context of user-friendly interfaces extensive
changes are introduced to augment metadata profiles
with information about how the metadata content should
be presented to the user. CMDI 1.1 only provided a very
simple approach to specify display priorities for

elements. This approach is replaced by a new namespace
for all kinds of display cues. These cues may contain
grouping information to allow merging of dependent
components, selection of elements as representatives of
their component or explicit visual hints. The set of
allowed cues is completely open for future extensions.
By using XSLT stylesheets the original component
specification can be augmented if necessary. As a
consequence a tool or a user can decide if display hints
are needed at all or may select between different sets of
display cues if available.
A further extension in CMDI 1.2 is the specification of
value derivation cues. The experience with CMDI in the
last years revealed that a lot of metadata can be
automatically derived from other values. This includes
the definition of duration as the difference of two
timestamps, the specification of language names based
on already stated language codes or the support of
keywords like "FileSize" that are automatically replaced
with their actual value by editor tools. The systematic
usage of this feature avoids redundancy, helps metadata
creators build consistent metadata and allows an explicit
definition of relations between elements. Similar to
visual hints there is no fixed set of allowed rules and
keywords. Instead a general framework is specified
where most information about relations is stored in an
external registry and the actual derivation is regarded as
an optional functionality of applications.

2.4 Attributes in instances
In CMDI 1.1 attributes on instance elements were always
optional. This does not allow for closely mimicking the
constraints of some existing models (the TEI Header
(TEI Consortium, 2014), for example, has mandatory
attributes), and poses a needless restriction. An element
'required' is added to the attribute definition in
component specifications in CMDI 1.2 to allow for both
optional and mandatory attributes.

3. Fixed CMD functionality

3.1 CMD Namespaces
In CMDI 1.1 a CMD namespace, i.e.,
http://www.clarin.eu/cmd/, was introduced. All CMDI
records use this namespace, regardless of the profile, and
thus XML Schema. This, although simple, approach has
led to problems with the basic assumptions about XML,
namespaces and schemas made by tools and standards
outside of CLARIN. For example, the OAI-PMH
protocol (Lagoze et al, 2002), which is used by CLARIN
but specified by the Open Archive Initiative, demands
that only one schema is associated with a metadata
prefix. But CMDI metadata comes with many schemas, a
different one for each profile. Also tools, such as
Xerces2-J 2 , that perform XML Schema validation,
assume (backed by the XML Schema recommendation
(Thompson et al, 2004)) that a namespace is associated
with a unique schema and base their caching strategy on
this. In CMDI 1.2 the single namespace is replaced by a
general namespace for the CMDI Envelope, and profile
specific namespaces for the payload. This allows binding
of the CMDI Envelope schema to the OAI-PMH CMDI

2 http://xerces.apache.org/xerces2-j

metadata prefix and also supports caching of profiles
specific schemas. In principle this touches every resource
in the infrastructure. Fortunately many of these tools can
use various approaches, e.g., wildcards, to ignore the
profile specific namespaces when they access arbitrary
CMDI records.
Another namespace related issue is the potential clash
between reserved attributes, i.e., ref and componentId,
and use defined attributes. In CMDI 1.2 reserved
attributes are moved to the CMD namespace, so the user
has the freedom to define attribute with arbitrary names,
e.g., including ref.

3.2 Changes in the CMD Envelope
In CMDI 1.1, IsPartOfList with its IsPartOf elements
can be used to link to collections that the described
resources and/or metadata are part of. However, the
nature of the (implicit) subject of an IsPartOf statement
has been unclear. While its current position within the
Resources element may indicate that any IsPartOf
relation applies to all resources referenced in
ResourceProxyList, its mere name ‘IsPartOf’ indicates a
single subject.
In CMDI 1.2, this issue will be resolved by moving
IsPartOfList to the envelope top level alongside
Resources, and restricting the semantic of IsPartOf to
express a partitive relationship between the described
resource as a whole and some collection or larger
resource.
Other relationships between resources than IsPartOf
can, broadly speaking, be expressed in one of two ways
in the CMDI framework; either using components and
elements, or as ResourceRelation elements within the
Resource section of the CMDI envelope.
ResourceRelations in CMDI 1.1 contain simply a
RelationType element giving a name for the relation,
together with elements Ref1 and Ref2 pointing to the
related resources.
Existing data shows that the latter method has been very
little used. There seems to be a general feeling that the
current ResourceRelation is too simplistic and
underspecified to convey the intended information.
Although no fundamental change will be performed in
CMDI 1.2, the intention is to clarify the semantics of the
current specification, all the while keeping the door open
for expressivity extension at a later date.
In CMDI 1.2, ResourceRelation elements should always
contain exactly two Resource elements (replacing Res1
and Res2), explicitly constraining relationships to be
binary. In these elements, a mandatory ref attribute
(indicating a resource listed in the same CMDI record)
and an optional Role element with an optional
ConceptLink attribute is added. Moreover, RelationType
is extended with an optional ConceptLink.
This way, both relationship direction as well as semantic
marking of both relation type and resource roles may be
defined by metadata creators.

3.3 Component Schema Cleanup
Since the development of CMDI started, multiple
developers have worked on the schema that governs how
CMDI profiles and components are specified in XML.
Different modelling strategies have been applied leading
to a mixed bag, e.g., most properties of CMDI elements

are specified via XML attributes while similar properties
are specified in XML elements for CMDI attributes. In
CMDI 1.2 these different approaches are cleaned up by
going back to the original approach of using XML
attributes whenever applicable.

4. Migration from CMDI 1.1 to 1.2
Centres should upgrade their data and tools if they wish
to benefit from the changes in CMDI 1.2 and good
integration with the infrastructure as other centres are
upgrading as well. CMDI 1.1 will be phased out in the
future, but initially the core infrastructure components
will support both version 1.1 and 1.2, allowing centres to
migrate at their own pace. Centres may choose to keep
supporting both versions after upgrading. Migrating to
CMDI 1.2 is an active migration process requiring
varying degrees of effort from the centres depending on
the specifics of the repository and/or tools maintained by
the centre involved. Support in the form of upgrade
scripts will be supplied by the CMDI taskforce.

4.1 CMDI Toolkit and Component Registry
The CMDI toolkit comprises the definitions (in the form
of XML Schema Definition (XSD) and Extensible
Stylesheet Language Transformations (XSLT)
documents) that define the language for the specification
of metadata components and profiles as well as the
structure of metadata instances in relation to profiles.
The taskforce will produce a new version of this toolkit,
which then provides the essential components for
creating CMDI 1.2 metadata.
The Component Registry is built on top of this toolkit
and will be the first infrastructure component to be
adapted to support CMDI 1.2. All existing components
and profiles stored in the Component Registry will be
converted to CMDI 1.2 once using an XSLT that is part
of the toolkit. These components and profiles will
become available at a new location in the Component
Registry’s web service. CMDI 1.1 versions of all
components and profiles will be generated on-the-fly by
applying a downgrade XSLT and can be requested by
tools and users at the existing locations. Therefore, the
Component Registry will remain compatible with
existing infrastructure components. An analysis has
shown out that converting existing components and
profiles back to CMDI 1.1 can be carried out losslessly,
therefore the validity of existing metadata instances is
not affected.

4.2 Conversion of CMD Records
The taskforce will provide an XSLT for upgrading
metadata records from CMDI 1.1 to CMDI 1.2.
Upgrading a record entails transforming the schema
reference into a reference to the schema based on the
CMDI 1.2 version of its profile and applying all required
changes to make the document compliant with the CMDI
1.2 specification (see sections 2 and 3). In some
exceptional cases, an automated transformation cannot
be carried out. Specifically, if no profile reference is
present in the original record or multiple ‘ref’ attributes
are found on a single element (both of which are schema
valid in CMDI 1.1), an error will be yielded and the
record will have to be adapted manually.

4.3 Tools, Services and Repositories
Since the Component Registry will keep supporting
CMDI 1.1, the need to upgrade other tools, services and
repositories hosted and maintained by the centres will
not be pressing immediately in most cases. To some
degree, a chicken-and-egg relation exists between the
repositories and the metadata they produce, and
exploitation software that processes this metadata.
Adding support for CMDI 1.2 to central tools and
services that deal with a broad variety of metadata
sources and types, such as the Virtual Language
Observatory, will be most urgent. As soon as some
support exists in the exploitation stack, it makes sense
for repositories to start providing CMDI 1.2 metadata. In
some cases this can be achieved by applying (additional)
transformations. Often, however, this will depend on
more thorough modifications in the metadata creation
pipeline, including editors and content management
systems, especially if the new features of CMDI 1.2 are
to be harnessed.

5. Roadmap
Work on the implementation has begun mid 2014,
starting with the creation of a new version of the toolkit.
Once this has been completed, the Component Registry
will be updated, followed by the migration of all
registered components and profiles. Finally, the
remainder of the infrastructure can be migrated in a
distributed fashion. The adoption rate of CMDI 1.2 will
have to determine the moment of deprecation of CMDI
1.1.
There are a number of tasks related to CMDI 1.2, some
of which are currently being worked on, and some of
which are planned for after or in parallel to the
implementation of CMDI 1.2. First of all, the taskforce
has initiated the process of writing an extensive and
formal specification of CMDI. Such a specification does
not exist for CMDI 1.1. In addition to this formal
description of the technical scope of CMDI, a document
describing best practices, targeted primarily at the
metadata modeller, is also planned for and a first version
is expected to get published in the near future.
There is ongoing work - coordinated by the CLARIN
Metadata Curation Task Force - on evaluating the quality
of the metadata records in the joint metadata domain.
The main goal is to provide a service that examines
individual records or whole collections, performing a
number of basic checks (schema validation, "dead
links", etc.), and optionally normalisation of values
based on controlled vocabularies, producing a curation
report that lists encountered issues. The checks will
especially also cover the specifics of the CMD versions,
to support the data provider in the transition period.
Once completed, this service will be integrated into the
basic workflow for harvesting the metadata and filling
the VLO.
Finally, it is good to point out that a number of known
shortcomings of CMDI 1.1 have been decided not to be
addressed in CMDI 1.2, but rather should be investigated
further so that a reliable and non-controversial solution
can be incorporated in a future version of CMDI. Some
features that are often considered to be desirable, but are
not present in either CMDI 1.2 or any previous version,
are versioning options for metadata instances, the

possibility of recursive component hierarchies, a
distinction between empty and nil field values and
component or profile specific limitation of the types of
resource references allowed in the instance. It is hoped
that the CMDI community will largely and successfully
adopt CMDI 1.2 and provide the support required to
implement these and other enhancements in the future.

6. Acknowledgements
The authors wish to thank the members of the CLARIN
CMDI Taskforce, as well as all participants of the CMDI
Future Workshop that was held in Utrecht on October 14,
2013.

7. References
Broeder, D. Kemps-Snijders, M., Van Uytvanck, D.,

Windhouwer, M., Withers, P., Wittenburg, P., and
Zinn, C (2010, May). A Data Category Registry- and
Component-based Metadata Framework. In
Proceedings of the Seventh conference on
International Language Resources and Evaluation
(LREC), pages 43–47, Valletta, Malta

Broeder, D., Windhouwer, M., van Uytvanck, D.,

Goosen, T., and Trippel, T. (2012). CMDI: a
Component Metadata Infrastructure. In Describing
LRs with Metadata: Towards Flexibility and
Interoperability in the Documentation of LR Workshop
Programme.

Brugman, H., and Lindeman, M. (2012). Publishing and

Exploiting Vocabularies using the OpenSKOS
Repository Service. In Describing LRs with Metadata:
Towards Flexibility and Interoperability in the
Documentation of LR Workshop Programme.

Lagoze, C., Van de Sompel, H., Nelson, M., and Warner,

S. (2002). The Open Archives Initiative Protocol for
Metadata Harvesting.
http://www.openarchives.org/OAI/2.0/openarchivespr
otocol.htm. Accessed on 20 June 2014.

TEI Consortium, eds. (2014). Guidelines for Electronic

Text Encoding and Interchange. 20 January 2014.
http://www.tei-c.org/P5/. Accessed on 20 June 2014.

Thomson, H.S., Beech, D., Maloney, M., and

Mendelsohn, N. (2004). XML Schema Part 1:
Structures Second Edition.
http://www.w3.org/TR/xmlschema-1/. Accessed on 20
June 2014.

Windhouwer, M., Goosen, T., Schonefeld O, Ohren, O.,

Eckart, T., Herold, A., Misutka, J., Frankhauser P.,
Schiel, F., Eckart, K., et al. (2014). CMDI 1.2 changes
- executive summary. Technical Report CE 2014-0318,
CLARIN ERIC,
http://www.clarin.eu/content/cmdi-12-changes-executi
ve-summary.

