
COMEDI: A new component metadata editor

Gunn Inger Lyse∗, Paul Meurer†, Koenraad De Smedt‡

University of Bergen∗,‡, Uni Research Computing†

Bergen, Norway

E-mail: gunn.lyse@uib.no∗, paul.meurer@uni.no†, desmedt@uib.no‡

Keywords: metadata, CMDI, editor

1. Introduction

Metadata for language resources and tools enhance their

visibility, reusability and durability (Trippel et al., 2014;

Piperidis et al., 2014; Dima et al., 2012; Lyse et al., 2012).

The Component Metadata Initiative (CMDI) (Broeder et al.,

2010) has led to a standard with the benefit of modularity

through reusable components and standard profiles.

Still, the process of creating and managing metada is a chal-

lenge for the less experienced and time consuming even

for the experienced. We therefore present the design and

implemention of COMEDI (COmponent Metadata EDItor),

a new CMDI-compatible editor, motivated by the wish to

offer even more efficiency and user-friendliness. COMEDI

can start from any metadata schema conforming to CMDI.

Among its features are an intuitive web interface, cloning

of information from existing metadata files and autofilling,

such as the ISO code for languages.

The editor has been created in the context of CLARINO,

which is implementing the Norwegian part of the CLARIN

infrastructure. The metadata work in CLARINO builds on

the work done in the META-NORD project (2011-2013),

in which the Norwegian partners produced 67 metadata

files describing a range of language resources made avail-

able in Norway (Haltrup Hansen and Pedersen, 2013). The

metadata was published on META-SHARE (see Section 2.).

The META-SHARE model has been mapped and incorpo-

rated into the Component Registry of CMDI (Piperidis et al.,

2014). As will be discussed in Section 2., META-SHARE and

other existing editors have advantages but also drawbacks,

which have motivated the development of COMEDI.

2. Existing metadata editors

2.1. Arbil

Arbil1 is a metadata editor, browser and organizer tool for

CMDI, IMDI and similar metadata formats (Withers, 2012).

It is characterized as ‘the reference implementation for a

CMDI editor’, but is primarily directed towards archivists

or librarians rather than non-expert researchers; the latter

group may therefore find the learning curve in Arbil rather

steep (Dima et al., 2012).

Arbil allows users to create and edit metadata displaying the

underlying XML-code as plain table structures. Arbil offers

several facilities to reduce the burden of repetitive typing

tasks: it allows editing of metadata via copy and paste into

1http://tla.mpi.nl/tools/tla-tools/arbil/

multiple fields of multiple rows (bulk editing); moreover,

frequently used sections of metadata can be collected from

a ‘favorites’ directory and be reused for new metadata. The

editor warns the user when a metadata field is missing or is

not in the required format but allows the user to continue

editing and to save even with errors.

The downside of Arbil, however, is its steep learning curve,

which makes it less user-friendly for the targeted average

metadata provider within CLARIN; moreover users report

that they experience Arbil as responding very slowly.

2.2. ProFormA

ProFormA2 is a web-based CMDI editor (Dima et al., 2012).

Through a web interface, the user selects a CMDI profile

to start from, and the editor displays the profile as a plain

online form, hiding the XML code. The user may create new

files, upload and edit existing files and download the result

as an XML file.

ProFormA is mainly designed to support NaLiDa profiles

and users, and does not seem to adequately support the full

CMDI framework.3 Among other things, there are display

errors related to cardinality: with elements that may occur

zero or infinitely many times only one instance can be cre-

ated. Conversely, with elements where the CMDI profile al-

lows zero or at most one item infinitely many instances are

allowed.

Moreover, the hierarchical structure is not always correctly

displayed. Sometimes the elements of a subcomponent are

displayed without a subcomponent title, which leaves the

subcomponent elements completely out of context. This

is particularly unfortunate since ProFormA also omits the

documentation text that ususally accompanies elements and

components in the CMDI profile.

There are also limitations regarding controlled vocabulary.

ProFormA allows the user to choose language names from

a drop-down menu only listing four languages: Dutch, En-

glish, French, and German. It is possible to type other lan-

guage names manually, but since ProFormA does not val-

idate content provided by the user, any string (even ill-

formed) will pass.

In conclusion, ProFormA currently appears to be of limited

use for the full choice of CMDI profiles in the Component

Registry.

2http://www.sfs.uni-tuebingen.de/nalida/
proforma/web/

3We tested by uploading the profile resourceInfo

(META-SHARE v3.0 – lexical/conceptual resources); ID:

clarin.eu:cr1:p_1355150532312

http://tla.mpi.nl/tools/tla-tools/arbil/
http://www.sfs.uni-tuebingen.de/nalida/proforma/web/
http://www.sfs.uni-tuebingen.de/nalida/proforma/web/


2.3. META-SHARE

The META-SHARE model is tailored to describe language

resources and tools relevant for language technology R&D,

and thus has not been created to support the full CMDI

framework. It offers metadata schemas for four resource

types: corpus, lexical/conceptual resource, tool/services and

language description. Metadata can be created, stored,

edited and updated using an online META-SHARE editor

which is implemented as a web-based form.4 Metadata

files can be converted to CMDI, e.g. using XSLT, since the

four META-SHARE schemas have CMDI counterparts in the

Component Registry (Piperidis et al., 2014).

META-SHARE stores files which are then visible and acces-

sible to the resource owners and the defined editing group

for easy cooperation between several individuals.

META-SHARE offers differing degrees of descriptive detail

at two levels: the minimal schema contains obligatory el-

ements (e.g. resource name and a resourceType classifica-

tion), and the maximal schema contains optional informa-

tion. META-SHARE does not allow the user to save a copy

(even temporarily) unless the information for the minimal

schema is complete and valid.

The editor offers autofill (e.g. for today’s date) and fea-

tures controlled vocabularies extensively through drop-

down lists (e.g. linguality type) and autocompletion (e.g.

language codes), which promotes consistent and correctly

typed metadata. The amount of repetitive typing is greatly

reduced by storing person info, institutional info and re-

search project info as separate objects in a database which

can be pointed to by multiple metadata files. If information

about an object must be changed later (e.g. changing the

e-mail of a person object), the change is automatically up-

dated in all metadata files pointing to this object.

A challenge with large metadata schemata is how to portion

out elements, components and subcomponents, and META-

SHARE appears as very complex and at times confusing in

this respect. Subcomponents are usually shrunk initially, but

the editor misses a uniform display both for shrunk and ex-

panded components and for how to expand components5.

In conclusion, the META-SHARE editor has user-friendly

features; however, like ProFormA, it has not been designed

to fully support CMDI profiles, which is a non-trivial draw-

back. There is also a potential for other improvements.

2.4. Other editors

General purpose XML editors such as Oxygen6 are challeng-

ing to use for non-experts, since their use requires some in-

sight in the XML technology (Dima et al., 2012). The IMDI-

editor7 seems to be more or less replaced by Arbil and will

not be further discussed in this paper. CLARIN-D has created

the HTML5 web app CMDI Maker,8 which is now part of the

CLARIN infrastructure and which allows the user to create

4Downloadable from https://github.com/metashare/
META-SHARE/downloads

5See for instance the discussion at: https://github.com/
metashare/META-SHARE/issues/315

6http://www.oxygenxml.com/
7https://tla.mpi.nl/tools/tla-tools/

older-tools/imdi-editor/
8http://class.uni-koeln.de/cmdi_maker/

IMDI files that may subsequently be uploaded as CMDI with

IMDI profile via Arbil.

3. COMEDI

3.1. Functionality and features

COMEDI offers a web interface.9 It is currently integrated in

a web framework at the emerging Clarin B-center in Bergen,

but can also be deployed as a stand-alone service.

COMEDI handles any CMDI-compatible profile (version

1.1; version 1.2 under development). Similarly to Pro-

FormA, the user can create new files by typing the CMDI

profile ID (cf. Figure 1), or by choosing between a subset

of available profiles in a drop-down menu. The user then

chooses a file identifier (in Figure 1 the name ‘demo-corpus-

profile’ was entered). This creates a new, empty file based

on the selected CMDI profile.

Figure 1: Screenshot illustrating the creation of a new meta-

data file based on a CMDI profile (referring to its profile ID).

The user may also upload and edit existing metadata

records. A metadata file in COMEDI can be exported as a

CMDI record, or embedded in an OAI-PMH wrapper.

A metadata schema may appear overwhelming, and the

ability to hide elements is therefore beneficial. COMEDI dis-

plays one top-level component at a time while keeping a

component menu at the top of the page where the user may

switch to another component (cf. the top line menu in Fig-

ure 2, where the currently chosen component, Contact per-

son is displayed in boldface).

COMEDI offers advanced navigation functionality: all op-

erations, e.g. navigating from one component or element

to another, switching between edit and view mode, edit-

ing content, adding or removing components and elements,

showing and hiding subcomponents, or switching between

top-level components, can be done with keyboard shortcuts

alone or by mouse-clicks. This should accommodate both

occasional and regular users. An on-line wiki-type docu-

mentation is provided.

In COMEDI there are two display modes, view mode and

edit mode. In view mode, the editor displays in red if oblig-

atory elements are missing in the given component or if

user-provided content does not validate correctly. For in-

stance, Figure 2 shows the Contact person component in

view mode, where the obligatory e-mail address is miss-

ing. In edit mode, the user may enter metadata in any or-

der desired. In both modes, the components and their ele-

ments are shown hierarchically as boxes containing boxes

(cf. Figure 2). Components can be expanded and shrunk by a

mouse click or a keyboard shortcut, akin to the profile dis-

play in the Component Registry. Initially, all but the top-

9http://clarino.uib.no/repository

https://github.com/metashare/META-SHARE/downloads
https://github.com/metashare/META-SHARE/downloads
https://github.com/metashare/META-SHARE/issues/315
https://github.com/metashare/META-SHARE/issues/315
http://www.oxygenxml.com/
https://tla.mpi.nl/tools/tla-tools/older-tools/imdi-editor/
https://tla.mpi.nl/tools/tla-tools/older-tools/imdi-editor/
http://class.uni-koeln.de/cmdi_maker/
http://clarino.uib.no/repository


Figure 2: Displaying one top-level component at a time

(view mode).

level components are shrunk. Optional uninstantiated com-

ponents are grayed out but visible in edit mode and hidden

in view mode.

Each component and each element is displayed along with

its documentation from the Component Registry. Adjacent

to the name, the number of instantiations of a component

or element is given, along with the allowed minimum and

maximum. When the minimum cardinality equals 1, the edi-

tor by default instantiates this component once, even though

it is initially empty. For instance, the component Person

info occurs once and must occur exactly once, hence we see:

[1/1] in Figure 3. Instances of elements and components can

be created or deleted using [+] and [−] buttons, if allowed

by the component definition.

Figure 3: Edit mode: validation of language code on the fly.

The editor saves working copies during a working session

in the server database, so that work can be resumed at any

time. This functionality works regardless of whether all user

content is valid according to the profile specification. As any

modern web-based editor, COMEDI supports Unicode char-

acter input. Spell checking is handled by the web browser.

Validation, controlled vocabulary and autocompletion are

indispensable tools to reduce the amount of inconsistencies

and errors in the metadata, while also saving time for the

metadata creator. The COMEDI editor validates input ac-

cording to the ValueScheme specification in the element

definition and displays an error message on invalid input.

Support for vocabulary services like OpenSKOS is planned

in the transition to CMDI version 1.2. autocompletion and

autofill is available where appropriate (e.g. autofill in to-

day’s date in MetadataLastDateUpdated).

COMEDI allows easy cloning of components from existing

metadata records stored in the repository, thus greatly re-

ducing the work burden of repetitive typing tasks. When

clicking on select component next to the component name,

a list of existing components of the same type (Componen-

tId) appears (Figure 4). The user can scroll through the list.

Upon selecting one of the items, its content is copied into

the component in focus. To make this feature safe to use, a

component can only be filled with new content if it is empty;

otherwise, it has to be cleared first. Similarly to Arbil, use-

ful components can be marked as favorites in the component

selection box; they will then appear first next time the user

evokes the component list for this component type. Cloned

contents may be edited as desired. Such editing will not af-

fect the contents of the original, and the edited version will

in that case simply appear as a new item in the list of com-

ponents.

A similar but distinct feature is the availability of instan-

tiated components that can be pointed at from different

places, in the sense of structure sharing. When such a com-

ponent’s content is changed in one place, the changes will

be reflected in all metadata records referring to it. This fea-

ture, which is also provided in the META-SHARE editor (cf.

Section 2.3.), is particularly useful for components describ-

ing person or institutional info and the like, where changes

should be propagated passim.

Figure 4: Cloning components: selecting an existing com-

ponent for cloning.

COMEDI has support for the id/ref mechanism in CMDI.

The Resources section of the metadata record can be edited

in much the same way as ordinary components. Resource

proxies can be referred to in components, and the consis-

tency of the ids and references is checked. The implemen-

tation of other Resource elements is planned.

The contribution of metadata by unknown users is generally

undesirable. Users of the editor (as of other resources hosted

at the center) are therefore authenticated via the CLARIN

IdP, the eduGAIN interconnection of IdP federations, or

OpenIdP (provided by Feide). Authorization with differing

degrees of rights can be given on an individual basis.

3.2. First user evaluation

Even if a clean web interface and features such as autofill

and cloning are known to add to user-friendliness, the ac-

tual user experience is an empirical issue. As a pilot study,

COMEDI was tested on a researcher of linguistics with high

technical skills in general, but without previous experience

with metadata. The researcher was asked to fill in metadata

for a lexical resource that he knows well. Overall, the test

person found that the threshold for using COMEDI was low:

getting started was easy and it was easy to keep track of

the editing process thanks to the top-level component menu

at the top of the page and the effortless shift between view



and edit mode. The user identified some weaknesses which

will easily be improved in the next version of COMEDI. For

instance, the researcher missed an autosave function when

navigating from edit to view mode. Also, it proved con-

fusing that the action of clicking on a title causes different

things to happen depending on whether it is an element ti-

tle (sending the user to the ISOcat page documenting that

element) or a component title (shrinking or enlarging the

component by clicking on it). To avoid this confusion, the

ISOcat link will instead be available as an explicit link next

to the title. We are planning a wider and more systematic

evaluation of the usability of COMEDI.

3.3. Implementation

COMEDI is written in Common Lisp, like the other ad-

vanced tools in the INESS and CLARINO infrastructures at

the Bergen center. The metadata being edited are stored in a

relational database. Central to all operations performed on

metadata in COMEDI are the CMDI profiles. The latter can

be fetched from the Component Registry in the XML-based

CMDI Component Specification Language (CCSL). Schema

descriptions of metadata are derived from the CCSL format.

The main idea in the implementation of COMEDI is to keep

the profile, as a description of possible metadata, tightly

connected to the metadata as a valid instantiation of the pro-

file. In concrete terms, both the profile and the (complete or

emerging) metadata are aspects of the same in-memory tree

representation.

To start with, the profile (in CCSL format) is parsed into a

DOM tree using a DOM parser. The DOM parser is however

modified in such a way that it adds specific wrapper nodes

around the CMD_Component and CMD_Element nodes of

the profile: first, each CMD_Component is wrapped into a

CMD_Component_Wrapper. Its cardinality attribute is set

to 0 or 1, in accordance with the value of the component’s

CardinalityMin. Then, each CMD_Element is wrapped into

a CMD_Element_Wrapper. If the element’s CardinalityMin

is 1, a CMD_Element_Realization is appended as a child

node of the wrapper after the CMD_Element node.

This is the state when the metadata is still empty, or, more

precisely, minimal. All components that have to be instan-

tiated have been given cardinality 1 in the wrapper, and all

elements that have to be instantiated are represented as a

CMD_Element_Realization, but their values are empty.

Editing of the metadata is reflected in changes in the DOM

tree: When an instantiation of an element is added in the

editor, a new CMD_Element_Realization node is created.

When a component is added in the editor, the wrapper’s car-

dinality is increased, and unless the new cardinality equals

1, the CMD_Component node itself is cloned and added as

a new child node to the wrapper. Editing of values sim-

ply results in changing the element realization’s value at-

tribute. New values are immediately validated against the

CMD_Element. Basically the same operations are executed

when existing metadata is read.

Starting from the unified DOM tree representation of both

the profile and the metadata, the HTML and Javascript/AJAX

code of the editor can be generated in a quite straightforward

way: The DOM tree is serialized to XML, and appropriate

XSL and CSS stylesheets create the HTML code. Since all

component and element information of the profile is avail-

able in the XML, the stylesheets can create the necessary

buttons and input elements to manipulate the metadata, and

specifically, will only create those buttons and elements that

are in accordance with the profile and result in admissible

manipulations.

4. Conclusion and future work

The development of COMEDI is well motivated since it of-

fers several advantages over existing editors, above all a

clear but highly functional web interface abstracting away

from technical details in an elegant manner while still keep-

ing the internal structure of the metadata explicit, thus help-

ing to produce metadata faster and more consistently (com-

ponent cloning, autofill, validation of user input). It also

features advanced navigation through keyboard shortcuts.

Equally important is its support for the full CMDI v. 1.1

specification.

The editor is functional but will benefit from further test-

ing for continued development. Among other things, we

foresee the need to improve the search possiblities in meta-

data. Also, user experiences need to be further evaluated.

COMEDI will be available in the public domain under a BSD

license.

5. Acknowledgements

The research reported in this paper has received support

from the Research Council of Norway through CLARINO.

6. References

Broeder, D., Kemps-Snijders, M., Uytvanck, D. V., Wind-

houwer, M., Withers, P., Wittenburg, P., and Zinn, C.

(2010). A data category registry- and component-based

metadata framework. In LREC’10, pages 43–47, Val-

letta, Malta. ELRA.

Dima, E., Hoppermann, C., Hinrichs, E., Trippel, T., and

Zinn, C. (2012). A metadata editor to support the de-

scription of linguistic resources. In LREC’12, Istanbul,

Turkey. ELRA.

Haltrup Hansen, D. and Pedersen, B. (2013). Deliverable

D3.3 third batch of resources including resources selected

in D2.4. Technical report, META-NORD.

Lyse, G. I., Escartín, C. P., and De Smedt, K. (2012). Ap-

plying Current Metadata Initiatives: The META-NORD

Experience. In Describing LRs with Metadata: Towards

Flexibility and Interoperability in the Documentation of

LR (LREC’12 Workshop), pages 20–27. ELRA.

Piperidis, S., Papageorgiou, H., Spurk, C., Rehm, G.,

Choukri, K., Hamon, O., Calzolari, N., Gratta, R. D.,

Magnini, B., and Girardi, C. (2014). Meta-share: One

year after. In LREC’14, pages 1532–1538, Reykjavik,

Iceland. ELRA.

Trippel, T., Broeder, D., Durco, M., and Ohren, O. (2014).

Towards automatic quality assessment of component

metadata. In LREC’14, pages 3851–3856, Reykjavik,

Iceland. ELRA.

Withers, P. (2012). Metadata Management with Arbil. In

Describing LRs with Metadata: Towards Flexibility and

Interoperability in the Documentation of LR (LREC’12

Workshop), pages 72–76. ELRA.


	Introduction
	Existing metadata editors
	Arbil
	ProFormA
	META-SHARE
	Other editors

	COMEDI
	Functionality and features
	First user evaluation
	Implementation

	Conclusion and future work
	Acknowledgements
	References

