

Co-funded by the Prevention of and Fight against Crime Programme of the European Union

Authorship Attribution Approaches for the Lithuanian Language Using Internet Comments

JURGITA KAPOČIŪTĖ-DZIKIENĖ

Authorship Attribution (AA)

- AA a task of identifying who from a set of candidate authors is an actual author of a given anonymous text
- Based on existing "human stylome" notion (*Van Halteren*, 2005)

AA is one of the oldest problems, highly topical nowadays

Applications Electronic Literary applications commerce **Forensics** Security **PAST NOW**

Related works (1/2)

- The research is done with:
 - e-mails, web forum messages, online chats, Internet blogs, tweets /short texts, non-normative language/
 - hundreds (*Luyckx and Daelemans*, 2008) or thousands authors (*Koppel et al.*, 2011); (*Narayanan et al.*, 2012) /larger candidate author sets/

Related works (2/2)

- Concept of idiolect for the first time discussed in 1971 (*Pikčilingis*, 1971)
- Lots of descriptive linguistic works
 (e.g. Žalkauskaitė, 2012; Venčkauskas et al., 2015)

• AA research with:

Reference	Texts	Authors	Methods
(Kapočiūtė-Dzikienė et al., 2015)	Parliamentary transcripts forum posts	100	Machine learning
(Kapočiūtė-Dzikienė et al., 2015a)	Fiction texts	3; 5; 10; 20;50;100	Machine learning
(Kapočiūtė-Dzikienė et al., 2015b)	Internet comments	1,000	Similarity-based

The corpus*

- Internet comments from www.delfi.lt (topics "in Lithuania" and "Abroad") in January 2015 August 2015
- To get clean corpus none of these authors were included:
 - o if the same pseudonym was used for writing from different IP addresses (dynamic IP problem)
 - o if different pseudonyms were used under the same IP address
- Replies, meta-information and non-Lithuanian alphabetic letters (except punctuation marks and digits) were filtered out
- No texts shorter than 30 symbols (excluding white-spaces)
- Texts with out-of-vocabulary words, missing diacritics, etc. /spoken non-normative Lithuanian language/

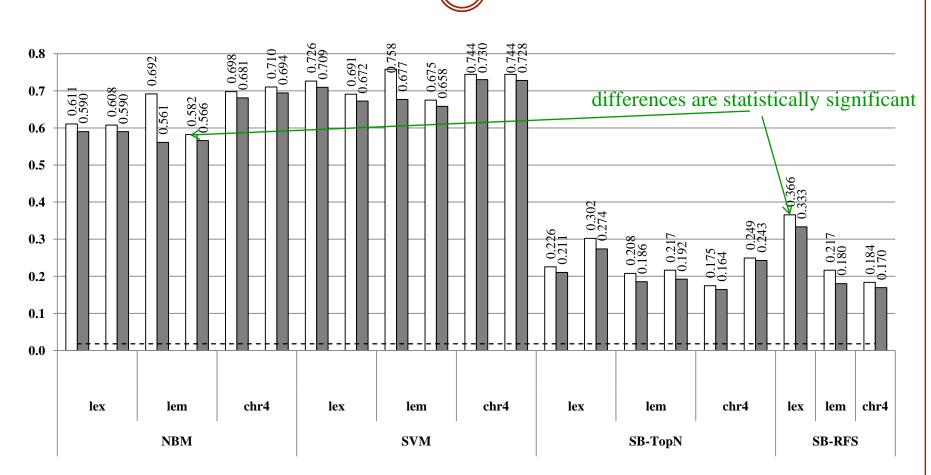
Corpus statistics

Number of authors	10	100	1,000
Number of texts	14,443	63,131	155,078
Number of tokens (words/digits)	289,462	1,511,823	4,068,231
Avg. text length in tokens	20.042	23.947	26.233
Random baseline	0.001	0.002	0.003
Majority baseline	0.018	0.018	0.018

Main research directions

- Methods:
 - \circ Machine Learning (ML): Naïve Bayes NB; Support Vector Machine SVM)
 - \circ Similarity-Based **SB** (cosine similarity measure)
- Feature types:
 - lex lexical
 - **lem** lemmas using *Lemuoklis* (*Zinkevičius*, 20000)
 - **chr4** word-level character tetra-grams
- Dimensionality reduction techniques:
 - Entire feature set
 - Feature ranking (using chi-squared) and **TopN** (N=30 thousand)
 - O Random feature set of N features in K iterations (K=20) **RFS** (offered by Koppel et al., 2011)

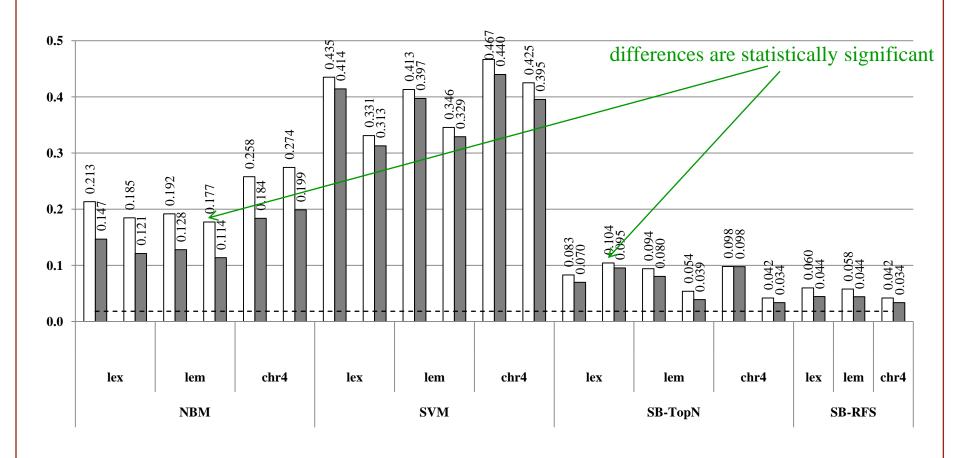
Experimental setup

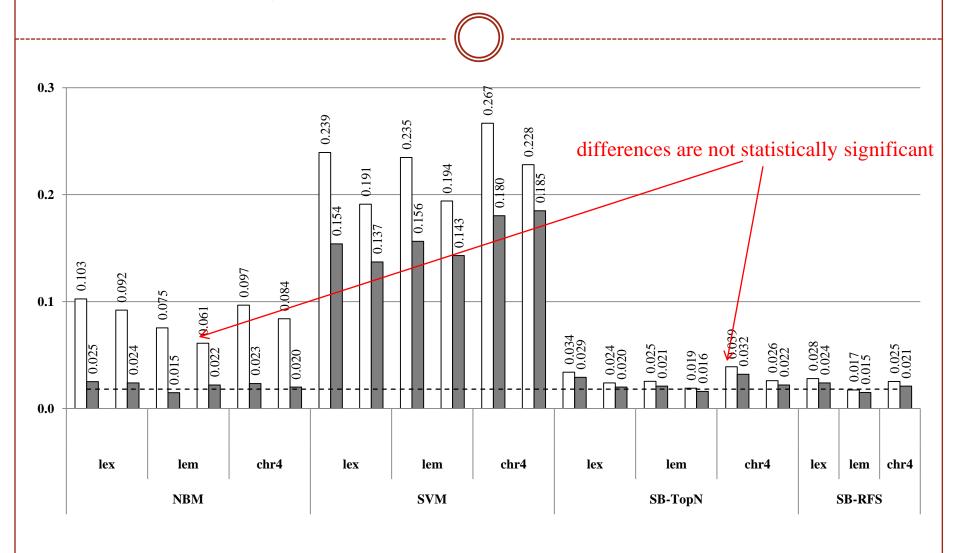


Stratified dataset

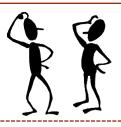
- 80%/20% for training/testing, respectively
- Calculated accuracies/f-score values

• McNemar's (*McNemar*, 1947) test for statistical significance ($\alpha = 0.05$)


10 candidate authors*


^{*} Accuracy and f-score in white and gray columns, respectively.

The first two columns – results on the entire feature set; the second two – on N=30,000 features. The dashed line indicates higher of random and majority baselines


100 candidate authors

1,000 candidate authors

Summary of results

- Not all results exceed random and majority baselines:
 - Lemmatizer is not adjusted to cope with the non-normative language
- \bullet ML > SB

• **chr4** > **lex** > **lem** (on the larger author sets)

• Entire feature set > RFS (N = 30,000; K = 20) >TopN (N = 30,000)

Conclusions and future work

• Conclusions:

- The first comparative AA results (in terms of methods, feature types, dimensionality reduction techniques) for the Lithuanian language using:
 - **▼** Internet comments
 - **■** a big author set (i.e., 1,000 candidate authors)
- The best results (especially on the larger author sets) with ML + chr4

• Future work:

- Error analysis and improvements
- Expanded number of candidate authors
- Different types of non-normative texts (e.g., social networks data)

Researchers who also worked on this topic

Ligita Šarkutė KUT

Andrius Utka **VMU**

Research Council of Lithuania

Automatic extraction of style applied to individual authors and groups of authors (ASTRA) (LIT-8-69)

http://dangus.vdu.lt/~jkd/eng/

Algimantas Venčkauskas Robertas Damaševičius **KUT**

KUT

Co-funded by the Prevention of and Fight against Crime Programme of the European Union

Lithuanian Cybercrime Centre of Excellence for Training, Research and Education (HOME/2013/ISEC/AG/INT/400005176)

Co-funded by the Prevention of and Fight against Crime Programme of the European Union

Thank you for your attention!

jurgita.k.dz@gmail.com