ASR fine tuning for minority languages and speaker adaptation

Jim O’Regan
Trend

Pretrained base model

(Usually using self-supervised learning on large amounts of data)

Fine-tuned for a particular task

(Usually using a much smaller amount of task-specific data)
Example: wav2vec2

Base model trained on large amounts of audio

Multilingual models:

XLSR-53
- Trained on 53 languages
- Generalises to others

XLS-R:
- Trained on 128 languages
- Generalises, but less well
 (Higher proportion of English training data)
Minority languages of Sweden

- Finnish
- Sami
- Romani
- Yiddish
- Meänkieli
Minority languages of Sweden

- Finnish
- Sami
- Romani
- Yiddish
- Meänkieli

Finnish is already well taken care of

Romani and Yiddish lack sufficient (Swedish) data; data from other places where they are spoken may be sufficient

Sami and Meänkieli have representation in Swedish radio broadcasts.
Aim:

Provide speech infrastructure for (at least some) minority languages
Strategy: Meänkieli

Finnish ASR, plus regular orthographic transformations

(Meänkieli diverged from Finnish, but retains a high degree of mutual intelligibility)
Strategy: Sami

Phonetic triangulation (the traditional approach)

Use (weighted) phonetic models of multiple languages to find a likely phonetic transcript
Speaker Adaptation
Speaker Adaptation

Improves speech recognition for individuals
Speaker Adaptation: Examples

Riksdag (Parliament) recordings
Folklore recordings
People of historical interest
Continuing for 300 updates
300 vs 1000 updates