
A Lightweight NLP Workflow Engine
for CLARIN-BE

CLARIN 2022, Prague

Adriaan Lemmens

PhD researcher @ KU Leuven, CLARIAH-VL

Vincent Vandeghinste

Coordinator CLARIN-BE @ KU Leuven & ivdnt.org

Text Analytics for the Humanities

CONTEXT

Users: researchers in humanities w/ non-tech profile

● Overwhelming choice of tools
○ Differences subtle

● Need to be combined to be actually useful
○ Manual effort -> replicability issues

CONTEXTPoints of Friction

● Cohesive environment for executing text analysis workflows

● UX design: radical simplicity
○ Users confronted with choice only if necessary

● Cover 80% of use cases

● Export to familiar formats
○ XML ☹ ↔ CSV 😊

● Re-use existing CLARIN tools

● But also collab with other unis/groups on new tools & workflows (/🌎)

CONTEXTOur Aims

Seaku – Text Analytics Dashboard CONTEXT

Seaku – Text Analytics Dashboard

● Web application
○ Easier for everyone

● Core functionality ➡
○ Manage corpora

○ ⚡ predefined workflows

○ Inspect results

○ Export
■ Annotations

■ Analysis summary

CONTEXT

Seaku – Text Analytics Dashboard

● Web application
○ Easier for everyone

● Core functionality ➡
○ Manage corpora

○ ⚡ predefined workflows

○ Inspect results

○ Export
■ Annotations

■ Analysis summary

CONTEXT

Today

Analysis Workflow Example CONTEXT

● User = historian
● Named entity analysis

What We Need CONTEXT

● Way to define & execute multi-step data processing logic, i.e. workflows

● Easy for non-core contributors to add workflows & components

● Easy to on-board junior-level devs

● Cheap to run
○ No on-demand cloud compute -> finite server capacity

● ‘Clustering’ algo in prev. ex. -> batch processing

Building a Custom NLP Workflow Engine

ENGINEERING

Hold on… 🛞

Other CLARIN devs

This presentation

WFEs Developed within CLARIN (NLP-focused)

WebLicht

● = App + WFE

● Tried and tested

● Rich tool metadata descriptions

● Single docs, not batches* #con

○ *Last time I checked

● Tools always online/running #con

● Java code base #con

● Unclear how to deploy #con

BACKGROUND

WFEs Developed within CLARIN (NLP-focused)

WebLicht

● = App + WFE

● Tried and tested

● Rich tool metadata descriptions

● Single docs, not batches* #con

○ *Last time I checked

● Tools always online/running #con

● Java code base #con

● Unclear how to deploy #con

CLARIN-PL WFE

● Powers CLARIN-PL’s vast tool inventory

● Batch processing ✅
● Tools run on-demand ✅
● Tools are containerized ✅
● Python API (+ Java, C++)

● Architectural similarities w our system

BACKGROUND

WFEs Developed within CLARIN (NLP-focused)

WebLicht

● = App + WFE

● Tried and tested

● Rich tool metadata descriptions

● Single docs, not batches* #con

○ *Last time I checked

● Tools always online/running #con

● Java code base #con

● Unclear how to deploy #con

CLARIN-PL WFE

● Powers CLARIN-PL’s vast tool inventory

● Batch processing ✅
● Tools run on-demand ✅
● Tools are containerized ✅
● Python API (+ Java, C++)

● Architectural similarities w our system

● Overlooked in initial survey 😐

BACKGROUND

Aims:

● Support batch processing

● Minimal idle footprint

● Easy to maintain & setup
○ Use ‘boring’ 3rd-party dependencies

○ Limit moving parts

● Dev-friendly API for authoring NLP workflows & components

● Introspectable by client apps, e.g. Seaku

Assumptions:

● Modest traffic expected. Infinite scaling unnecessary.

Design Aims & Assumptions
ENGINEERING

orcaNLP : WF Engine + Python Library
ENGINEERING

● As a an engine….

○ Based on Message Queue architecture

■ Delegates to Celery library for all MQ communication

○ High-level abstractions for interacting w distributed system

○ No central orchestrator

● As a library…

○ Abstractions to wrap existing tools/models -> interoperable

○ Metadata+config-as-code

■ No separate description schema + better IDE support

●

● Based on Message Queue (MQ) architecture

○ Messages = ‘tasks’ to be executed in separate (worker) process.

● All clients and workers import orcanlp :

○ Vocabulary of simple™ shared abstractions

■ Enabling interop

■ User-facing abstractions converted to remote tasks behind-the-scenes

○ Metadata-as-code

■ No separate description schema + IDE support

○ Delegates to Celery library for all MQ communication

○ Utilities for setting up (e.g. project generation)

● As an engine…
○ Based on Message Queue (MQ) architecture

■ (Just like CLARIN-PL’s WFE)

○ Distributable (No K8s needed)

orcaNLP : WF Engine + Python Library
ENGINEERING

● As a an engine….

○ Based on Message Queue architecture

■ Delegates to Celery library for all MQ communication

○ High-level abstractions for interacting w distributed system

○ No central orchestrator

● As a library…

○ Abstractions to wrap existing tools/models -> interoperable

○ Metadata+config-as-code

■ No separate description schema + better IDE support

●

● Based on Message Queue (MQ) architecture

○ Messages = ‘tasks’ to be executed in separate (worker) process.

● All clients and workers import orcanlp :

○ Vocabulary of simple™ shared abstractions

■ Enabling interop

■ User-facing abstractions converted to remote tasks behind-the-scenes

○ Metadata-as-code

■ No separate description schema + IDE support

○ Delegates to Celery library for all MQ communication

○ Utilities for setting up (e.g. project generation)

● As an engine…
○ Based on Message Queue (MQ) architecture

■ (Just like CLARIN-PL’s WFE)

○ Distributable (No K8s needed)

● As a library…
○ Clients & workers import orcanlp

○ Provides abstractions to wrap existing tools/models -> interoperable

○ Focus on dev-friendliness
■ E.g. ‘Everything-as-code’ -> rely on IDE assistance

○ Utilities for setting up (e.g. project generation)

Main user-facing abstractions ENGINEERING

Deployment Setup ENGINEERING

Orchestration:
Docker Compose or Swarm Mode

Hiding details of distributed system ENGINEERING

Lifecycle
of a
Workflow

ENGINEERING

Lifecycle
of a
Workflow

ENGINEERING

Lifecycle
of a
Workflow

ENGINEERING

Lifecycle
of a
Workflow

ENGINEERING

Lifecycle
of a
Workflow

ENGINEERING

Defining an Operator ENGINEERING

Defining an Operator ENGINEERING1

1. Inherit from Operator base class

Defining an Operator ENGINEERING1

21. Inherit from Operator base class

2. Metadata-as-code

Defining an Operator ENGINEERING1

21. Inherit from Operator base class

2. Metadata-as-code

3. Config schema

3

Defining an Operator ENGINEERING1

21. Inherit from Operator base class

2. Metadata-as-code

3. Config schema

4. Wrap tool/core logic in __call__() body 3

4

Defining a Workflow ENGINEERING

(Similar process as before)

Defining a Workflow ENGINEERING

1. Inherit from Flow base class

1

(Similar process as before)

Defining a Workflow ENGINEERING

1. Inherit from Flow base class

2. Metadata-as-code

1

2
(Similar process as before)

Defining a Workflow ENGINEERING

1. Inherit from Flow base class

2. Metadata-as-code

3. Config schema

1

2

3

(Similar process as before)

Defining a Workflow ENGINEERING

1. Inherit from Flow base class

2. Metadata-as-code

3. Config schema

4. __call__() returns WF Steps

○ WF defined dynamically, e.g. <- config

1

2

3

4

(Similar process as before)

Toolset contribution story

1. $ pip install orcanlp (soon™)
○ Python 3.7 or later

2. $ orcanlp init to generate project structure

3. Define Operators/DagFlow + add to Toolset

4. Track Py dependencies with Poetry & pyproject.toml

5. Modify/replace default Dockerfile
○ Non-Py dependencies installed here.

6. $ orcanlp preflight to find issues

7. Seaku-specific (WIP)
○ Push to any remote on GitHub

○ Open PR in Seaku repo adding remote url to toolset index

○ Code review -> build -> deploy

ENGINEERING

Discussion

Strengths

● Initial stress tests promising

● Batch (corpus) processing support

● Lightweight

○ On-demand only

○ No K8s overhead

● Small codebase (< 600 LoC)

● Easy to set-up locally

● Dev-friendly API

○ Clear abstractions

○ Details of remote tasks hidden

ENGINEERING

Discussion

Strengths

● Initial stress tests promising

● Batch (corpus) processing support

● Lightweight

○ On-demand only

○ No K8s overhead

● Small codebase (< 600 LoC)

● Easy to set-up locally

● Dev-friendly API

○ Clear abstractions

○ Details of remote tasks hidden

Weaknesses

● Harder to reason about resource limits

● Elastic scaling less obvious

● Deadlocks possible
○ (So far unobserved)

● Between steps, delay while pushing/fetching

data to/from remote storage
○ Underutilization of resources.

ENGINEERING

Where is the code?

Aiming for open-source release in Q2 2023.

● Cleaning up code

● Documentation

● Example Toolsets demo’ing best practices

● More tests

● Proper CI/CD

ENGINEERING

Summary

● We’re building Seaku - text analytics software for researchers

Summary

● We’re building Seaku - text analytics software for researchers

● ⚙ NLP workflows/pipelines powered by our custom workflow engine

→ orcaNLP

Summary

● We’re building Seaku - text analytics software for researchers

● ⚙ NLP workflows/pipelines powered by our custom workflow engine

→ orcaNLP

● 👷 To grow workflow catalog, make contributing as easy as possible

-> dev-friendly API + tooling

Summary

● We’re building Seaku - text analytics software for researchers

● ⚙ NLP workflows/pipelines powered by our custom workflow engine

→ orcaNLP

● 👷 To grow workflow catalog, make contributing as easy as possible

-> dev-friendly API + tooling

● 🚀 Open-source release in Q2 next year

FAQs ENGINEERING

● Q: What about non-Python/older than Python 3.7 tools?
○ A: Include in Docker image & call as subprocess.

● Q: Isn’t batch processing memory-intensive?

○ A: DocArrays (corpus objects) are backed by on-disk SQLite DB -> low memory impact.

● Q. How is workflow execution monitored?

○ A: Celery Flower gives us this for free.

● Q: Can a single worker perform multiple Operator tasks at once?

○ A: In principle, yes; but we limit buffer size to 1, so 1 container = 1 task

● Q: How do you avoid dependency conflicts when installing different Toolsets into the Client

process environment?

○ A: Toolset-specific deps are skipped (possible because they are only imported within

__call__() body)

