From Punched Cards
to Linguistic Linked Data
...through Infrastructures

Marco Passarotti

CLARIN Annual Conference 2021
27-29 September, 2021

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme - Grant Agreement No. 769994.
Overview

The Story So Far (through the lenses of the *Index Thomisticus*)
Analogue and Isolated ... but Findable
Digital and (Partly) Accessible

Prefixes Matter. Infrastructures and Interoperability
CLARIN. One place fits all
Linguistic Linked Open Data. One place interlinks all
It Works! The LiLa Knowledge Base

Conclusions ... and Hopes for the Future
Table of Contents

The Story So Far (through the lenses of the *Index Thomisticus*)
Analogical and Isolated ... but Findable
Digital and (Partly) Accessible

Prefixes Matter. Infrastructures and Interoperability
CLARIN. One place fits all
Linguistic Linked Open Data. One place interlinks all
It Works! The LiLa Knowledge Base

Conclusions ...and Hopes for the Future
Millions of Punched Cards
Analogical and isolated ...but Findable
Millions of Punched Cards
Analogical and isolated ...but Findable
Millions of Punched Cards
Analogical and isolated ...but Findable
The Result ...on Paper

The *Index Thomisticus*

Marco Passarotti | From Punched Cards to Linguistic Linked Data
Table of Contents

The Story So Far (through the lenses of the *Index Thomisticus*)
 Analogical and Isolated ...but Findable
 Digital and (Partly) Accessible

Prefixes Matter. Infrastructures and Interoperability
 CLARIN. One place fits all
 Linguistic Linked Open Data. One place interlinks all
 It Works! The LiLa Knowledge Base

Conclusions ...and Hopes for the Future
The Digital Turn: (meta)data (partly) accessible
The CD-ROM of the *Index Thomisticus*
The Digital Turn: (meta)data (partly) accessible
Thanks God for the CD-ROM!

IF ONLY THE HOLY SPIRIT HAD GIVEN ME THIS CD-ROM IN THE 13TH CENTURY!
Thanks God for Internet!

The Digital Turn: (meta)data (partly) accessible

CORPUS THOMISTICUM
INDEX THOMISTICUS
by Roberto Busa SJ and associates
web edition by Eduardo Bernot and Enrique Alarcón
la versione italiana non è ancora disponibile

Search: computare

CONCORDANCES TERMS WORKS OPTIONS NEW SEARCH

FOUND 13 CASES IN 13 PLACES

CASE 2. PLACE 2. Super Sent., lib. 4 d. 30 q. 2 a. 1 qc. 2 co. Ad secundam quaeestionem dicendum, quod conveniens fuit matrem Christi matrimonio esse junctam tum propter causas in littera assignatas, tum etiam propter alias causas: quorum prima est, ut significaret Ecclesiam, quae est virgo et sponsa. Secunda, ut per Joseph genealogia Mariae texeretur: non enim erat consuetudo apud Hebraeos ex parte mulierum genealogiam computare. Tertia, ut virginibus excusatio tolleretur, si de fornicatione infamantur. [...]²

CASE 3. PLACE 3. Super Sent., lib. 4 d. 43 q. 1 a. 3 qc. 2 co. [...]⁷ Unde illi omnes qui tempus praedictum numerare voluerunt, haec tamen falsilioqui sunt inventi. Quidam enim, ut Augustinus dixit ibidem, dixerunt ab ascensione domini usque ad ultimum ejus adventum quadingentos annos posse completer, aliis quingentos, aliis mille: quorum falsitas patet; et similiter patebit eorum qui adhuc computare non cessant.
Table of Contents

The Story So Far (through the lenses of the Index Thomisticus)
 Analogical and Isolated ...but Findable
 Digital and (Partly) Accessible

Prefixes Matter. Infrastructures and Interoperability
 CLARIN. One place fits all
 Linguistic Linked Open Data. One place interlinks all
 It Works! The LiLa Knowledge Base

Conclusions ...and Hopes for the Future
The CLARIN Infrastructure
One place fits all: making resources Accessible, Reusable and (partly) Findable

Common Language Resources and Technology Infrastructure
The CLARIN Infrastructure
One place fits all: but what about making resources (semantically) Interoperable?

- Virtual Language Observatory: aggregating metadata from various sources to a set of resources
- Language Resource Switchboard (+ WebLicht): to combine the outputs of different NLP tools into custom processing chains; web-based NLP services grouped by task/function
- Component MetaData Infrastructure (CMDI):
 - Components: groups of semantically coherent metadata elements
 - Profiles: sets of components and elements describing specific resource types
 - Component Registry: a collection of concepts with persistent identifiers
 - Semantic interoperability: linking metadata elements/components to concepts stored in the CLARIN Concept Registry (CCR)
Virtual Language Observatory: aggregating metadata from various sources to find a set of resources
The CLARIN Infrastructure
One place fits all: but what about making resources (semantically) Interoperable?

▶ Virtual Language Observatory: aggregating metadata from various sources to find a set of resources
▶ Language Resource Switchboard (+ WebLicht, to combine the outputs of different NLP tools into custom processing chains): web-based NLP services grouped by task/function
The CLARIN Infrastructure
One place fits all: but what about making resources (semantically) Interoperable?

- **Virtual Language Observatory**: aggregating metadata from various sources to find a set of resources
- **Language Resource Switchboard** (+ WebLicht, to combine the outputs of different NLP tools into custom processing chains): web-based NLP services grouped by task/function
- **Component MetaData Infrastructure** (CMDI):
 - **Components**: groups of semantically coherent metadata elements
 - **Profiles**: sets of components and elements describing specific resource types
 - **Component Registry**: a collection of concepts with persistent identifiers
The CLARIN Infrastructure
One place fits all: but what about making resources (semantically) Interoperable?

▶ Virtual Language Observatory: aggregating metadata from various sources to find a set of resources

▶ Language Resource Switchboard (+ WebLicht, to combine the outputs of different NLP tools into custom processing chains): web-based NLP services grouped by task/function

▶ Component MetaData Infrastructure (CMDI):
 ▶ Components: groups of semantically coherent metadata elements
 ▶ Profiles: sets of components and elements describing specific resource types
 ▶ Component Registry: a collection of concepts with persistent identifiers

▶ Semantic interoperability: linking metadata elements/components to concepts stored in the CLARIN Concept Registry (CCR)
The CLARIN Infrastructure
Limitations to interoperability in CLARIN (P. Labropoulou: LLD CLARIN Café, 29/4/21)

▶ CCR: a collection of concepts, identifiable by their persistent identifiers, relevant for the domain of language resources
▶ implemented in SKOS
▶ no relations between internal concepts (hence, no semantic inference)
▶ no relations to external concepts (no crosswalks to popular schemas)
▶ lack of curation (too many similar concepts)

▶ Use of SKOS vocabularies
limited to those in CLAVAS (CLARIN Vocabulary and Alignment Service)
CCR: a collection of concepts, identifiable by their persistent identifiers, relevant for the domain of language resources

- implemented in SKOS
- no relations between internal concepts (hence, no semantic inference)
- no relations to external concepts (no crosswalks to popular schemas)
- lack of curation (too many similar concepts)
CCR: a collection of concepts, identifiable by their persistent identifiers, relevant for the domain of language resources

- implemented in SKOS
- no relations between internal concepts (hence, no semantic inference)
- no relations to external concepts (no crosswalks to popular schemas)
- lack of curation (too many similar concepts)

Use of SKOS vocabularies: limited to those in CLAVAS (CLARIN Vocabulary and Alignment Service)
Table of Contents

The Story So Far (through the lenses of the *Index Thomisticus*)
Analogue and Isolated ...but Findable
Digital and (Partly) Accessible

Prefixes Matter. Infrastructures and Interoperability
CLARIN. One place fits all
Linguistic Linked Open Data. One place interlinks all
It Works! The LiLa Knowledge Base

Conclusions ...and Hopes for the Future
The Linked Data Principles
...just to be FAIR

- Use URIs for things (e.g. an entry in a lexicon, a token in a corpus)
- Use HTTP URIs to allow people (and machines) to look up things
- Use web standards to represent/query (meta)data, such as RDF and SPARQL
- Include links to other URIs
Use URIs for things (e.g. an entry in a lexicon, a token in a corpus)
The Linked Data Principles
...just to be FAIR

- Use URIs for things (e.g. an entry in a lexicon, a token in a corpus)
- Use HTTP URIs to allow people (and machines) to look up things
The Linked Data Principles...just to be FAIR

- Use URIs for things (e.g. an entry in a lexicon, a token in a corpus)
- Use HTTP URIs to allow people (and machines) to look up things
- Use web standards to represent/query (meta)data, such as RDF and SPARQL
The Linked Data Principles
...just to be FAIR

- Use URIs for things (e.g. an entry in a lexicon, a token in a corpus)
- Use HTTP URIs to allow people (and machines) to look up things
- Use web standards to represent/query (meta)data, such as RDF and SPARQL
- Include links to other URIs
Why To Apply LD to Linguistic Resources
J. Gracia: LLD CLARIN Café, 29/4/21

- Resources disconnected from each other (silos of LRs)
- Proprietary and heterogeneous formats
- Different representation schemes, query languages, annotation criteria and tagsets

Marco Passarotti | From Punched Cards to Linguistic Linked Data
Why To Apply LD to Linguistic Resources

J. Gracia: LLD CLARIN Café, 29/4/21

- Resources disconnected from each other (silos of LRs)
Resources disconnected from each other (silos of LRs)
Proprietary and heterogeneous formats
Why To Apply LD to Linguistic Resources

J. Gracia: LLD CLARIN Café, 29/4/21

- Resources disconnected from each other (silos of LRs)
- Proprietary and heterogeneous formats
- Different representation schemes, query languages, annotation criteria and tagsets
Benefits of Applying LD to Linguistic Resources
Chiarcos et al. (2013)

Description:
- Representation and Modelling: RDF is a very versatile data model to represent stand-alone annotations, dependency parses, etc.
- Structural Interoperability: HTTP, URIs, RDF, SPARQL
- Conceptual Interoperability: common ontologies and re-usable vocabularies to understand how to use the URIs; resources are explicitly linked
- Federation: to combine information from physically separated repositories
- Dynamicity: to provide access to the most recent version of a resource
- Ecosystem: a large and active community with common tools and practices. Initiatives: COST Action Nexus Linguarum (European network for Web-centred linguistic data science); Prêt-à-LLOD (RIA): Ready-to-use Multilingual Linked Language Data for Knowledge Services across Sectors; LD/LT (Linked Data for Language Technology Community Group): to create a consolidated LOD vocabulary for web (linguistic) annotation
Representation and Modelling: RDF is a very versatile data model to represent stand-off annotations, dependency parses etc.
Benefits of Applying LD to Linguistic Resources
Chiarcos et al. (2013)

- Representation and Modelling: RDF is a very versatile data model to represent stand-off annotations, dependency parses etc.
- Structural Interoperability: HTTP, URIs, RDF, SPARQL
Benefits of Applying LD to Linguistic Resources
Chiarcos et al. (2013)

- **Representation and Modelling:** RDF is a very versatile data model to represent stand-off annotations, dependency parses etc.

- **Structural Interoperability:** HTTP, URIs, RDF, SPARQL

- **Conceptual Interoperability:** common ontologies and re-usable vocabularies to understand how to use the URIs: resources are explicitly linked
Benefits of Applying LD to Linguistic Resources
Chiarcos et al. (2013)

▶ Representation and Modelling: RDF is a very versatile data model to represent stand-off annotations, dependency parses etc.

▶ **Structural Interoperability**: HTTP, URIs, RDF, SPARQL

▶ **Conceptual Interoperability**: common ontologies and re-usable vocabularies to understand how to use the URIs: resources are explicitly linked

▶ **Federation**: to combine information from physically separated repositories
Benefits of Applying LD to Linguistic Resources
Chiarcos et al. (2013)

- **Representation and Modelling**: RDF is a very versatile data model to represent stand-off annotations, dependency parses etc.
- **Structural Interoperability**: HTTP, URIs, RDF, SPARQL
- **Conceptual Interoperability**: common ontologies and re-usable vocabularies to understand how to use the URIs: resources are explicitly linked
- **Federation**: to combine information from physically separated repositories
- **Dynamicity**: to provide access to the most recent version of a resource
Benefits of Applying LD to Linguistic Resources
Chiarcos et al. (2013)

- **Representation and Modelling**: RDF is a very versatile data model to represent stand-off annotations, dependency parses etc.
- **Structural Interoperability**: HTTP, URIs, RDF, SPARQL
- **Conceptual Interoperability**: common ontologies and re-usable vocabularies to understand how to use the URIs: resources are explicitly linked
- **Federation**: to combine information from physically separated repositories
- **Dynamicity**: to provide access to the most recent version of a resource
- **Ecosystem**: a large and active community with common tools and practices. Initiatives: (1) COST Action Nexus Linguarum (COST Action 2019-2023): European network for Web-centred linguistic data science; (2) Prêt-à-LLOD (RIA 2019-2022): Ready-to-use Multilingual Linked Language Data for Knowledge Services across Sectors; (3) LD4LT (Linked Data for Language Technology Community Group): to create a consolidated LOD vocabulary for web (linguistic) annotation
Table of Contents

The Story So Far (through the lenses of the *Index Thomisticus*)
 Analogical and Isolated ...but Findable
 Digital and (Partly) Accessible

Prefixes Matter. Infrastructures and Interoperability
 CLARIN. One place fits all
 Linguistic Linked Open Data. One place interlinks all
 It Works! The LiLa Knowledge Base

Conclusions ...and Hopes for the Future
LiLa Knowledge Base
Approach: Linked Data paradigm

ERC Consolidator Grant
2018-2023

A collection of multifarious, interoperable linguistic resources described with the same vocabulary for knowledge description (by using common data categories and ontologies)

Interlinking as a Form of Interaction

Marco Passarotti | From Punched Cards to Linguistic Linked Data
LiLa Knowledge Base
Lexically-based architecture and (meta)data sources

Lemmas

Lexical Entries

Tokens

NLP Output

Lexical Resources
- Latin Wordnet
- Valency Lexicon
- Dictionaries...

Textual Resources
- Digital libraries
- Treebanks
- Textual corpora...

NLP Tools
- Tokenizers
- Taggers/parsers
- Lemmatizers...

Marco Passarotti | From Punched Cards to Linguistic Linked Data
Lemma *admiror* ‘to admire, to respect’
http://lila-erc.eu/data/id/lemma/87541

- Lemma Bank
- A derivational lexicon (Word Formation Latin)
- A polarity lexicon (LatinAffectus)
- An etymological dictionary (De Vaan)
- A Valency Lexicon (Latin Vallex)
- A manually checked subset of the Latin WordNet
nam primum est ex hoc quod bonum *aestimatur* malum; (IT-TB: SCG, lib. 1, cap. 89, n. 13)

for the first arises because the good *is judged* to be evil; (Trans. Anton C. Pegis)
Textual Resources
Source: the *Index Thomisticus* Treebank (UD scheme)
Token *aestimatur*

http://lila-erc.eu/lodview/data/corpora/ITTB/id/token/005.SCG*LB1.CP-8++9.N.13.2-6.4-1W8
LiLa: Overview
Resources connected and upcoming connections

▶ Corpora
✓ Index Thomisticus Treebank (*Summa contra Gentiles*): ca. 450,000 nodes
✓ Dante Search (700th death anniversary): ca. 46,000 tokens
✓ *Querolus sive Aulularia*: ca. 17,000 tokens
□ PROIEL and LLCT treebanks
□ Computational Historical Semantics, LASLA and CroALa Corpora

▶ Lexica
✓ Word Formation Latin: ca. 46,000 lemmas (Classical Latin)
✓ Etymological dictionary of Latin & the other Italic Langs.: ca. 1,400 entries
✓ LatinAffectus: ca. 2,300 entries
✓ Index Graecorum Vocabulorum in Linguam Latinam: ca. 1,800 entries
✓ Latin WordNet: ca. 1,000 manually checked entries
✓ Latin Vallex 2.0: Valency Lexicon
□ Lewis & Short Dictionary

▶ NLP tools
✓ LEMLAT (lemma bank): ca. 150,000 lemmas

▶ TOTAL: approximately 13 million triples
Query Interface, Triplestore and Linker

- Query interface; Triplestore
- Linker

Linguistic Resources. Corpora

- Index Thomisticus Treebank
- Dante Search
- Querolus sive Aulularia

Linguistic Resources. Lexica

- Word Formation Latin
- Etymological Dictionary of Latin & the Other Italic Languages
- LatinAffectus
- Index Graecorum Vocabulorum in Linguam Latinam
- Latin WordNet
- Latin Vallex 2.0
Open Challenges
It is not so easy ...but we are doing our best

To fully exploit digital texts
texts "in a form that both humans and machines can use, preferably in a way that leverages the unique capabilities of both"
(S. Huskey, SunoikisisDC SS 2021 - Session 12)
Open Challenges
It is not so easy ...but we are doing our best

To fully exploit digital texts
texts "in a form that both humans and machines can use, preferably in a way that leverages the unique capabilities of both"
(S. Huskey, SunoikisisDC SS 2021 - Session 12)

▶ Making LOD more accessible and usable: facilitating wider participation in LOD, e.g. by automating the processing of (meta)data (workflows for creating LOD)
Open Challenges
It is not so easy ...but we are doing our best

To fully exploit digital texts
texts "in a form that both humans and machines can use, preferably in a way that leverages the unique capabilities of both"
(S. Huskey, SunoikisisDC SS 2021 - Session 12)

▶ Making LOD more accessible and usable: facilitating wider participation in LOD, e.g. by automating the processing of (meta)data (workflows for creating LOD)

▶ LOD is Open and Accessible, but producing it takes money, time, expertise: funding for data entry, modeling etc.
Open Challenges
It is not so easy ...but we are doing our best

To fully exploit digital texts
texts "in a form that both humans and machines can use, preferably in a way that leverages the unique capabilities of both"
(S. Huskey, SunoikisisDC SS 2021 - Session 12)

► Making LOD more accessible and usable: facilitating wider participation in LOD, e.g. by automating the processing of (meta)data (workflows for creating LOD)

► LOD is Open and Accessible, but producing it takes money, time, expertise: funding for data entry, modeling etc.

► Models still missing for several types of (meta)data: e.g. for critical editions
To fully exploit digital texts

texts "in a form that both humans and machines can use, preferably in a way that leverages the unique capabilities of both"

(S. Huskey, SunoikisisDC SS 2021 - Session 12)

- Making LOD more accessible and usable: facilitating wider participation in LOD, e.g. by automating the processing of (meta)data (workflows for creating LOD)

- LOD is Open and Accessible, but producing it takes money, time, expertise: funding for data entry, modeling etc.

- Models still missing for several types of (meta)data: e.g. for critical editions

- Community-based effort: persuading resource developers to adopt LOD practices and reaching consensus around shared vocabularies, ontologies, data categories etc.
A Shared, Formal Representation of What Exists
A common *language* to turn Babel upside down

Marco Passarotti | From Punched Cards to Linguistic Linked Data
LiLa: Linking Latin
Università Cattolica del Sacro Cuore
CIRCSE Research Centre

✉️ info@lila-erc.eu
🔗 https://github.com/CIRCSE
🔗 https://lila-erc.eu
🐦 @ERC_LiLa
📍 Largo Gemelli 1, 20123 Milan, Italy

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme - Grant Agreement No. 769994.