
Build your own treebank

Daniël de Kok, Dörte de Kok, Marie Hinrichs
University of Tübingen

Wilhelmstr. 19, 72074 Tübingen
daniel.de-kok@uni-tuebingen.de, doerte.de-kok@uni-tuebingen.de, marie.hinrichs@uni-tuebingen.de

1. Introduction
Large automatically annotated treebanks can be a useful
resource to estimate the distribution of lexical or syntac-
tic phenomena in a language. For example, Bouma and
Spenader (2009) use an automatically annotated version of
the Twente News Corpus to study the distribution of weak
and strong object reflexives in Dutch, Hinrichs and Beck
(2013) use among other corpora the automatically anno-
tated TüPP-D/Z corpus to study auxiliary fronting in Ger-
man, and Samardžić and Merlo (2012) use an automatically
parsed version of the Europarl corpus to study causitive al-
ternation.
In the computational linguistics community, applications
such as GATE (Bontcheva et al., 2004) and WebLicht (Hin-
richs et al., 2010) have been developed to make natural
language processing tools available to the wider linguistic
community. These applications offer a user-friendly inter-
face, wherein the user can pick a chain of annotation tools
and execute it on a text. The results of syntactic analysis
can be searched and visualized using treebank search tools
such as TIGERSearch (Lezius, 2002), ANNIS (Zeldes et
al., 2009), INESS-Search (Meurer, 2012), Dact (Van Noord
et al., 2013) and Tündra (Martens, 2013). Ideally, annota-
tion and search are integrated, such as in the case of INESS
(Rosén et al., 2012) or WebLicht plus Tündra.
However, current tools are often suboptimal for the con-
struction and exploitation of large treebanks. In order to
parse large amounts of text, it needs to be chunked into
smaller parts and distributed among a large number of
CPUs. This usually requires technical know-how of the
parser being used and cluster batch management tools. In
addition, the treebank search tools were often developed
for smaller, manually annotated corpora, and do not scale
to larger corpora.
In this paper, we present our latest work on scalability in
WebLicht and Tündra, with the explicit goal of making
construction and use of large automatically annotated tree-
banks available to the linguistics community. We then ad-
dress the parts that still require development and relate our
work to existing work, particularly INESS and GATE.

2. WebLicht
2.1. Introduction
WebLicht (Hinrichs et al., 2010) is an execution environ-
ment for natural language processing pipelines. It uses a
Service Oriented Architecture (SOA) (Natis, 2003), which
means that distributed, independent, RESTful web services
are combined to form a chain for text analysis. Chains are

constructed and executed using the web service chainer.
This component constructs chains based on the profile of
the input data and descriptions of web services in the form
of CMDI metadata. The role of the chainer is three-fold:
(1) it suggests which services can be added to the chain;
(2) it checks whether a chain is valid; (3) it orchestrates
the execution of the chain, which is done by sequentially
sending POST requests to the services, where the body of
the request to service n + 1 is the response of service n.
WebLicht webservices use the Text Corpus Format (TCF)
(Heid et al., 2010) as their interchange format, although
services that perform conversions to and from TCF are also
provided.
One important advantage of WebLicht’s SOA architecture
is that it is very easy to add a new service: a CLARIN cen-
ter hosts the service and adds the service metadata to its
repository.

2.2. Scalability
Two aspects of scalability in the WebLicht infrastructure
can be considered: the number of concurrent users and the
size of the inputs that it can handle. The number of users
that can be served simultaneously can be increased by in-
troducing more concurrency in a service. The processing
speed of large inputs can be improved by introducing paral-
lel processing. Obviously, there is interaction between both
types of scalability in that both compete for CPU time.
Since most WebLicht services are implemented using JAX-
RS and deployed in a Java servlet container, they provide
the first type of scalability by allowing concurrent requests.
However, services typically do not do any resource man-
agement. Consequently, sending a large number simultane-
ous requests can lead to resource starvation. Additionally,
these services do not perform parallel processing at the re-
quest level.
Due to WebLicht’s service-oriented architecture, it is diffi-
cult to address scalability in the web service chainer. In or-
der to do so, it would need to know how to split up an input
into chunks, what the properties of the wrapped text analy-
sis software are, and what resources are available to a web
service. This would complicate the architecture of Web-
Licht significantly, for a small number of services which
have heavy processing requirements. Instead, we opted to
provide building blocks for scalable services, which can be
used to make existing services more scalable when neces-
sary, without making any changes to the WebLicht architec-
ture. In the next section, we discuss these building blocks,
which form a distributed task queue.

2.3. Distributed task queue
The principle of a task queue is simple: a client can post
tasks on the queue, while workers pop tasks off the queue
and perform them. In a distributed task queue, different
physical machines can act as workers. The distributed task
queue that we use, Jesque1 is a small wrapper around Re-
dis.2 Redis is a key-value store that can store strings, lists,
sets, ordered sets, hash tables, and HyperLogLogs as val-
ues. Since Redis provides commands to push and pop items
from both sides of a list, Redis key-value pairs can act as a
distributed task queue, where the key is the queue name and
the list-typed value the queue. A task is queued by pushing
a value to the left side of the list and a task can be taken
from the queue by a worker by popping the rightmost list
element.
Using such a queue, we can easily obtain both request con-
currency and parallelization within a request. If two re-
quests are made at the same time, both lead to creation of
tasks that are put in the queue. If there is more than one
worker, these tasks are processed concurrently. Paralleliza-
tion within a request is achieved by applying a chunker to
the input and creating a task for each chunk, which results
in parallel processing of the chunks if more than one worker
is available.

2.4. Worker crashes
The task queue described above is not resilient against
worker crashes. When a worker starts processing a task,
the task is no longer stored in Redis which can result in a
task being lost if a worker crashes. To solve this problem,
we implemented durable queues. We use Redis transac-
tions to implement a new command that stores a task on an
in-flight list when it is popped from the queue and handed
to a worker. The worker removes its task from the in-flight
list when it has successfully completed it.
If a worker is able to shutdown gracefully when it crashes,
it can requeue its task and remove it from the in-flight list.
Otherwise, the task will remain on the in-flight list. We run
a separate process that regularly checks the in-flight lists
and requeues tasks if a worker has crashed.

2.5. Fair scheduling
Another remaining problem with the task queue is that tasks
for long inputs are in the same queue as tasks for short in-
puts. Consequently, tasks from long inputs can block those
from short inputs. Jesque allows a worker to poll multiple
queues. We exploit this functionality to create n different
queues for a particular service. When the service gets a re-
quest to process an input, we split it in chunks of a fixed
size, and create a task for each chunk in the nth queue,
where n = log10(|S|) and S is the set of sentences in the
input. In other words, the tasks are queued based on the
order of magnitude of the input. Since Jesque workers poll
each queue in turn and we use a constant chunk size, we
are effectively applying fair scheduling (Kay and Lauder,
1988) at the queue level.

1http://gresrun.github.io/jesque/
2http://redis.io/

2.6. Input chunking

To accommodate parallel processing, a web service should
not submit a processing request as one task. First of all,
because larger tasks could saturate all the workers. Second,
because it does not allow parallel processing of a request if
workers are idle. For this reason, we provide a library for
splitting TCF in chunks at a sentence-level granularity. The
library also performs the orchestration. The implementer
of a service only requests submission of a TCF corpus and
gets an iterator over the processed results.

2.7. Evaluation

To evaluate the performance of the distributed task queue,
we benchmarked the updated Malt web service in a com-
mon deployment scenario. In this test, we install Malt
workers on two VMs on the same physical machine. Both
instances used Kernel Virtual Machine (KVM) virtualiza-
tion and provided 4 cores (Intel Xeon X5650 2.67GHz). We
then parsed Schatz im Silbersee (15,324 sentences/238,592
tokens) using 1, 2, 4, 6, and 8 cores with the updated ser-
vice. When an even number of cores is used, an equal num-
ber of cores are used on each virtual machine. Figure 1
shows the results of this small experiment. We can clearly
see that parsing performance scales nearly linearly with the
number of cores.
Since we were happy with these results, we have deployed
this architecture in our production versions of the Malt and
Stanford parsers. In the meanwhile, we have used the dis-
tributed Malt parser to process 30 million sentences from
the German Wikipedia.
In the future, we plan to test scenarios where the workers
are on different physical machines within the same rack and
a larger number of CPUs, by deploying the services in a
computing cluster.

1 2 3 4 5 6 7 8

0
10

00
20

00
30

00
40

00
50

00

Cores

S
en

te
nc

e/
s

Figure 1: The number of sentences processed per second
per number of cores. Measurements were made in two
quad-core KVM virtual machines, running on an Intel Xeon
X5650 2.67GHz.

http://gresrun.github.io/jesque/
http://redis.io/

3. Tündra
3.1. Introduction
Tündra is a web application for searching and visualizing
treebanks (Martens, 2013). It supports constituency and de-
pendency treebanks and uses the TIGERSearch query lan-
guage. Tündra uses BaseX (Grün et al., 2007) to store tree-
banks, which is an XML database engine that supports the
XQuery language. It indexes the attribute values of XML
documents and performs query optimization such that in-
dexes are accessed before processing the remainder of a
query. Tündra translates TIGERSearch queries to XQuery,
which is then processed by BaseX.

3.2. Scalability
Tündra was originally developed for large manually an-
notated treebanks, such as TüBa-D/Z (Telljohann et al.,
2004).3 We encountered some scalability issues when using
larger corpora in Tündra, such as the Wikipedia treebank
mentioned in Section 2.7.

3.3. Initial query processing time
The first issue encountered was that the initial processing
time was often very long when running a query. BaseX can
return matching nodes as they are found, allowing Tündra
to show matches while the query is still running. However,
if the indexes are not in the operating system’s page cache,
they have to be read from disk into memory. To demon-
strate this overhead, we run the query "sehen" >OBJA
#o on the databases in Table 1.4 The results on a Mid 2011
iMac (2,7 GHz Intel Core i5, 8GB RAM) are shown in Ta-
ble 2. As we can see, BaseX scales linearly on this query
when the pages are in the page cache (Hot) and when they
are not (Cold). However, the time to read the database into
memory is very large compared to the actual running time,
giving the initial delay when running the query on a large
database.

Chunks Sentences Size (MB)
1 7214 43

10 70770 407
100 748209 4237

Table 1: Sizes of our benchmark test sets. Each chunk con-
sists of approximately 7,000 sentences from the German
Wikipedia that were parsed using the following WebLicht
chain: To TCF Converter, IMS Tokenizer, OpenNLP POS
Tagger, IMS Morphology (RFTagger), Malt Parser, Berke-
ley Parser, and SepVerb Lemmatizer. The indicated sizes
are the on-disk sizes of the BaseX databases.

To solve this problem, we removed instances where BaseX
was directly accessed in the Tündra code base. Instead, we
use a very generic treebank interface. We then follow the
same approach as used by Dact (Van Noord et al., 2013)

3Release 9 contains 85,000 sentences.
4This query finds all nodes with have a direct object relation

with nodes that have sehen as their token, lemma, category, sub-
category, or part-of-speech.

Chunks Cold (ms) Hot (ms) ∆
1 1506 62 1444

10 9619 502 9117
100 80424 4985 75439

Table 2: Timings for running the query "sehen" >OBJA
#o. The cold timings indicate the processing times when
the database blocks are not in the operating system’s buffer
cache.

in that we provide an implementation of the treebank inter-
face that is a concatenation of treebanks. This implemen-
tation provides a query iterator that wraps the iterators of
the underlying treebanks. As a result, we can create many
small treebanks that are presented as one treebank to the
user. When users run a query, they will see results quickly,
as the query preparation time is that of a small treebank,
even for large treebanks such as Wikipedia.

3.4. Statistics view
Tündra provides a statistics view, which shows frequencies
of attributes on matched nodes. For example, if the query
in the previous section is executed, viewing the lemma at-
tribute of the nodes bound to variable o will give the fre-
quencies of lemmas that are the direct object of sehen. The
statistics view had two problems when used on large tree-
banks. The first was that it only showed statistics after the
query execution was finished. This is undesirable for ex-
ploratory research, since the execution of a query could take
minutes or even hours. We changed the statistics view to
show intermediate results while the query is running, which
allows the user to quickly get an idea of the distribution of
the selected attribute.
The second problem in the statistics view was that the
Tündra process could run out of memory when a query was
executed that resulted in a large number of hits where one
of the attributes has many unique values. For instance, if
we are interested in what part-of-speech follows an article,
we could run a query such as [cpos="ART"] . #w.
Since a statistics query will store the attribute-value fre-
quencies of nodes bound to w and these nodes will have
a wide variety of tokens, the query takes a large amount of
memory.
To alleviate this problem, we apply reservoir sampling (Vit-
ter, 1985) to queries which lead to a large number of re-
sults.5 Reservoir sampling is an algorithm that creates a
sample of size s from an unknown number of observations
n, such that each observation has the probability p = n/s of
being in the sample. Reservoir sampling runs in O(n) time
and O(1) space. Since reservoir sampling runs in constant
space, we can ensure that such queries never consume all
of the process heap, while giving the user reliable relative
frequency estimates of attribute-value distributions.

4. Related work
This section discusses some overlapping capabilities of
WebLicht and Tündra with work done in other projects.

5In the current version 100,000 matched nodes.

We limit the discussion to scalability, since scalability is
the focus of this paper. We concentrate on two well-known
projects: GATE and INESS.
GATE (Bontcheva et al., 2004) allows users to build and
run NLP processing pipelines. The GATE approach differs
from WebLicht in that it allows much more customization
and retraining of individual tools. However, learning how
to use GATE may be prohibitive for novice users. Since
GATE normally runs on a user’s own machine, they are
responsible for scaling GATE themselves. Alternatively,
GATE can be used as a commercial Cloud solution, but this
requires the user to pay per hour of processing time.
INESS (Rosén et al., 2012) has rich support for treebank
search and visualization. One particularly nice feature of
INESS is its support of parallel corpora, which is not avail-
able in Tündra. INESS-Search also uses indexing and query
optimization (Meurer, 2012) to process queries quickly.
However, the authors do not report on results with tree-
banks at the scale of e.g. Wikipedia.
Whereas WebLicht allows end users to construct custom
processing chains, INESS currently offers only authorized
annotators a web interface and tool chain for preprocessing,
parsing, and disambiguating large texts towards the con-
struction of LFG treebanks.

5. Availability and future work
WebLicht users can immediately benefit from most of the
improvements described in this paper. The Malt and Stan-
ford services parsers hosted in Tübingen have been mod-
ified to use the distributed task queue. Since parsers are
usually the heaviest services, this speeds up the processing
of frequently-used parsing chains significantly. The first re-
lease of Tündra that hosts a dependency-parsed version of
the German Wikipedia is also available.
One remaining problem is that WebLicht’s workspaces are
currently bound to a user session. While this works fine
for e.g. parsing a novel or a month of newspaper text, a
user cannot be expected to keep their browser tab open for
days or even weeks to process very large corpora. We plan
to modify WebLicht to support such scenarios as well, by
allowing the user to log in at a later time to monitor progress
or view the results. In the meanwhile, corpora that are too
large for interactive processing can already be submitted by
more technical users using WebLicht as a Service (WaaS).6

6. Conclusion
In this paper we have discussed recent advances in the scal-
ability of WebLicht and Tündra. These improvements make
it possible for linguists to construct and exploit large auto-
matically annotated treebanks.

7. References
Bontcheva, K., Tablan, V., Maynard, D., and Cunningham,

H. (2004). Evolving GATE to meet new challenges in
language engineering. Natural Language Engineering,
10(3-4):349–373.

6https://weblicht.sfs.uni-tuebingen.de/
WaaS/

Bouma, G. and Spenader, J. (2009). The distribution
of weak and strong object reflexives in Dutch. In van
Eynde, F., Frank, A., Smedt, K. D., and van Noord,
G., editors, Proceedings of the Seventh International
Workshop on Treebanks and Linguistic Theories (TLT 7),
pages 103–114.

Grün, C., Holupirek, A., and Scholl, M. H. (2007). Visu-
ally exploring and querying XML with BaseX. In BTW,
volume 103, pages 629–632.

Heid, U., Schmid, H., Eckart, K., and Hinrichs, E. W.
(2010). A corpus representation format for linguistic
web services: The d-spin text corpus format and its re-
lationship with iso standards. In Proceedings of LREC
2010, Malta.

Hinrichs, E. and Beck, K. (2013). Auxiliary fronting in
German: A walk in the woods. In The Twelfth Workshop
on Treebanks and Linguistic Theories (TLT12), page 61.

Hinrichs, E., Hinrichs, M., and Zastrow, T. (2010). Web-
licht: Web-based LRT services for German. In Proceed-
ings of the ACL 2010 System Demonstrations, pages 25–
29. Association for Computational Linguistics.

Kay, J. and Lauder, P. (1988). A fair share scheduler. Com-
munications of the ACM, 31(1):44–55.

Lezius, W. (2002). TIGERSearch ein suchwerkzeug für
baumbanken. Tagungsband zur Konvens.

Martens, S. (2013). TüNDRA: A web application for tree-
bank search and visualization. In The Twelfth Workshop
on Treebanks and Linguistic Theories (TLT12), page
133.

Meurer, P. (2012). INESS-Search: A search system for
lfg (and other) treebanks. In Butt, M. and King, T. H.,
editors, Proceedings of the LFG 2012 Conference, pages
404–421. Stanford, CA: CSLI Publications.

Natis, Y. V. (2003). Service-oriented architecture scenario.
Technical Report AV-19-6751, Gartner Inc., April.

Rosén, V., De Smedt, K., Meurer, P., and Dyvik, H. (2012).
An open infrastructure for advanced treebanking. In
META-RESEARCH Workshop on Advanced Treebanking
at LREC2012, Istanbul, pages 22–29.

Samardžić, T. and Merlo, P. (2012). The meaning of lexi-
cal causatives in cross-linguistic variation. Linguistic Is-
sues in Language Technology, 7:1–14.

Telljohann, H., Hinrichs, E., and Kübler, S. (2004). The
TüBa-D/Z treebank: Annotating german with a context-
free backbone. In In Proceedings of the Fourth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC 2004).

Van Noord, G., Bouma, G., Van Eynde, F., De Kok, D.,
Van der Linde, J., Schuurman, I., Sang, E. T. K., and Van-
deghinste, V. (2013). Large scale syntactic annotation of
written Dutch: Lassy. In Essential Speech and Language
Technology for Dutch, pages 147–164. Springer.

Vitter, J. S. (1985). Random sampling with a reservoir.
ACM Transactions on Mathematical Software (TOMS),
11(1):37–57.

Zeldes, A., Lüdeling, A., Ritz, J., and Chiarcos, C. (2009).
ANNIS: A search tool for multi-layer annotated corpora.
In Proceedings of Corpus Linguistics 2009.

https://weblicht.sfs.uni-tuebingen.de/WaaS/
https://weblicht.sfs.uni-tuebingen.de/WaaS/

	Introduction
	WebLicht
	Introduction
	Scalability
	Distributed task queue
	Worker crashes
	Fair scheduling
	Input chunking
	Evaluation

	Tündra
	Introduction
	Scalability
	Initial query processing time
	Statistics view

	Related work
	Availability and future work
	Conclusion
	References

